Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Hum Comput Stud ; 177: 103083, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-20230730

ABSTRACT

During the COVID-19 outbreak, crowdsourcing-based context-aware recommender systems (CARS) which capture the real-time context in a contactless manner played an important role in the "new normal". This study investigates whether this approach effectively supports users' decisions during epidemics and how different game designs affect users performing crowdsourcing tasks. This study developed a crowdsourcing-based CARS focusing on restaurant recommendations. We used four conditions (control, self-competitive, social-competitive, and mixed gamification) and conducted a two-week field study involving 68 users. The system provided recommendations based on real-time contexts including restaurants' epidemic status, allowing users to identify suitable restaurants to visit during COVID-19. The result demonstrates the feasibility of crowdsourcing to collect real-time information for recommendations during COVID-19 and reveals that a mixed competitive game design encourages both high- and low-performance users to engage more and that a game design with self-competitive elements motivates users to take on a wider variety of tasks. These findings inform the design of restaurant recommender systems in an epidemic context and serve as a comparison of incentive mechanisms for gamification of self-competition and competition with others.

2.
Microbiol Spectr ; 11(3): e0464022, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2298025

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a major public health threat globally, especially during the beginning of the pandemic in 2020. Reverse transcription-quantitative PCR (RT-qPCR) is utilized for viral RNA detection as part of control measures to limit the spread of COVID-19. Collecting nasopharyngeal swabs for RT-qPCR is a routine diagnostic method for COVID-19 in clinical settings, but its large-scale implementation is hindered by a shortage of trained health professionals. Despite concerns over its sensitivity, saliva has been suggested as a practical alternative sampling approach to the nasopharyngeal swab for viral RNA detection. In this study, we spiked saliva from healthy donors with inactivated SARS-CoV-2 from an international standard to evaluate the effect of saliva on viral RNA detection. On average, the saliva increased the cycle threshold (CT) values of the SARS-CoV-2 RNA samples by 2.64 compared to the viral RNA in viral transport medium. Despite substantial variation among different donors in the effect of saliva on RNA quantification, the outcome of the RT-qPCR diagnosis was largely unaffected for viral RNA samples with CT values of <35 (1.55 log10 IU/mL). The saliva-treated viral RNA remained stable for up to 6 h at room temperature and 24 h at 4°C. Further supplementing protease and RNase inhibitors improved the detection of viral RNA in the saliva samples. Our data provide practical information on the storage conditions of saliva samples and suggest optimized sampling procedures for SARS-CoV-2 diagnosis. IMPORTANCE The primary method for detection of SARS-CoV-2 is using nasopharyngeal swabs, but a shortage of trained health professionals has hindered its large-scale implementation. Saliva-based nucleic acid detection is a widely adopted alternative, due to its convenience and minimally invasive nature, but the detection limit and direct impact of saliva on viral RNA remain poorly understood. To address this gap in knowledge, we used a WHO international standard to evaluate the effect of saliva on SARS-CoV-2 RNA detection. We describe the detection profile of saliva-treated SARS-CoV-2 samples under different storage temperatures and incubation periods. We also found that adding protease and RNase inhibitors could improve viral RNA detection in saliva. Our research provides practical recommendations for the optimal storage conditions and sampling procedures for saliva-based testing, which can improve the efficiency of COVID-19 testing and enhance public health responses to the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Saliva , Clinical Laboratory Techniques/methods , RNA, Viral/genetics , RNA, Viral/analysis , Endoribonucleases
3.
Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi ; 2023.
Article in English | EuropePMC | ID: covidwho-2263481

ABSTRACT

Background Understanding the neutralizing antibody (NAb) titer against COVID-19 over time is important to provide information for vaccine implementation. The longitudinal NAb titer over one year after SARS-CoV-2 infection is still unclear. The purposes of this study are to evaluate the duration of the neutralizing NAb titers in COVID-19 convalescents and factors associated with the titer positive duration. Methods A cohort study followed COVID-19 individuals diagnosed between 2020 and 2021 May 15th from the COVID-19 database from the Taiwan Centers for Disease Control. We analyzed NAb titers from convalescent SARS-CoV-2 individuals. We used generalized estimating equations (GEE) and a Cox regression model to summarize the factors associated with NAb titers against COVID-19 decaying in the vaccine-free population. Results A total of 203 convalescent subjects with 297 analytic samples were followed for a period of up to 588 days. Our study suggests that convalescent COVID-19 in individuals after more than a year and four months pertains to only 25% of positive titers. The GEE model indicates that longer follow-up duration was associated with a significantly lower NAb titer. The Cox regression model indicated the disease severity with advanced condition was associated with maintaining NAb titers (adjusted hazard ratio: 2.08, 95% CI: 1.12–3.61) and that non-smoking also was associated with maintaining NAb titers (adjusted hazard ratio: 1.69, 95% CI: 1.08–2.64). Conclusions Neutralizing antibody titers diminished after more than a year. The antibody titer response against SARS-CoV-2 in naturally convalescent individuals provides a reference for vaccinations.

4.
J Microbiol Immunol Infect ; 56(3): 506-515, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2263484

ABSTRACT

BACKGROUND: Understanding the neutralizing antibody (NAb) titer against COVID-19 over time is important to provide information for vaccine implementation. The longitudinal NAb titer over one year after SARS-CoV-2 infection is still unclear. The purposes of this study are to evaluate the duration of the neutralizing NAb titers in COVID-19 convalescents and factors associated with the titer positive duration. METHODS: A cohort study followed COVID-19 individuals diagnosed between 2020 and 2021 May 15th from the COVID-19 database from the Taiwan Centers for Disease Control. We analyzed NAb titers from convalescent SARS-CoV-2 individuals. We used generalized estimating equations (GEE) and a Cox regression model to summarize the factors associated with NAb titers against COVID-19 decaying in the vaccine-free population. RESULTS: A total of 203 convalescent subjects with 297 analytic samples were followed for a period of up to 588 days. Our study suggests that convalescent COVID-19 in individuals after more than a year and four months pertains to only 25% of positive titers. The GEE model indicates that longer follow-up duration was associated with a significantly lower NAb titer. The Cox regression model indicated the disease severity with advanced condition was associated with maintaining NAb titers (adjusted hazard ratio: 2.01, 95% CI: 1.11-3.63) and that smoking was also associated with higher risk of negative NAb titers (adjusted hazard ratio: 0.55, 95% CI: 0.33-0.92). CONCLUSIONS: Neutralizing antibody titers diminished after more than a year. The antibody titer response against SARS-CoV-2 in naturally convalescent individuals provides a reference for vaccinations.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cohort Studies , Taiwan/epidemiology , Antibodies, Neutralizing , Antibodies, Viral
5.
Emerg Microbes Infect ; : 1-45, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2242558

ABSTRACT

Numerous vaccines have been developed to address the current COVID-19 pandemic, but safety, cross-neutralizing efficacy, and long-term protectivity of currently approved vaccines are still important issues. In this study, we developed a subunit vaccine, ASD254, by using a nanoparticle vaccine platform to encapsulate the SARS-CoV-2 spike receptor-binding domain (RBD) protein. As compared with the aluminum-adjuvant RBD vaccine, ASD254 induced higher titers of RBD-specific antibodies and generated 10- to 30-fold more neutralizing antibodies. Mice vaccinated with ASD254 showed protective immune responses against SARS-CoV-2 challenge, with undetectable infectious viral loads and reduced typical lesions in lung. Besides, neutralizing antibodies in vaccinated mice lasted for at least one year and were effective against various SARS-CoV-2 variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, particle size, polydispersity index, and zeta potential of ASD254 remained stable after 8-month storage at 4°C. Thus, ASD254 is a promising nanoparticle vaccine with good immunogenicity and stability to be developed as an effective vaccine option in controlling upcoming waves of COVID-19.

6.
J Med Virol ; 95(2): e28478, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173236

ABSTRACT

Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity.


Subject(s)
COVID-19 , Lymphopenia , Animals , Mice , SARS-CoV-2/metabolism , B7-H1 Antigen , Immune Evasion , NF-kappa B/metabolism , Up-Regulation , Cytokines/metabolism
8.
Emerg Microbes Infect ; 11(1): 2724-2734, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2087655

ABSTRACT

The development of safe and effective vaccines to respond to COVID-19 pandemic/endemic remains a priority. We developed a novel subunit protein-peptide COVID-19 vaccine candidate (UB-612) composed of: (i) receptor binding domain of SARS-CoV-2 spike protein fused to a modified single-chain human IgG1 Fc; (ii) five synthetic peptides incorporating conserved helper and cytotoxic T lymphocyte (Th/CTL) epitopes derived from SARS-CoV-2 structural proteins (three from S2 subunit, one from membrane and one from nucleocapsid), and one universal Th peptide; (iii) aluminum phosphate as adjuvant. The immunogenicity and protective immunity induced by UB-612 vaccine were evaluated in four animal models: Sprague-Dawley rats, AAV-hACE2 transduced BALB/c mice, rhesus and cynomolgus macaques. UB-612 vaccine induced high levels of neutralizing antibody and T-cell responses, in all animals. The immune sera from vaccinated animals neutralized the SARS-CoV-2 original wild-type strains and multiple variants of concern, including Delta and Omicron. The vaccination significantly reduced viral loads, lung pathology scores, and disease progression after intranasal and intratracheal challenge with SARS-CoV-2 in mice, rhesus and cynomolgus macaques. UB-612 has been tested in primary regimens in Phase 1 and Phase 2 clinical studies and is currently being evaluated in a global pivotal Phase 3 clinical study as a single dose heterologous booster.


Subject(s)
COVID-19 , Viral Vaccines , Rats , Mice , Humans , Animals , SARS-CoV-2 , COVID-19 Vaccines , Broadly Neutralizing Antibodies , Pandemics/prevention & control , COVID-19/prevention & control , Rats, Sprague-Dawley , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , Vaccines, Subunit/genetics , Mice, Inbred BALB C , Macaca mulatta , Antibodies, Viral
9.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1974874

ABSTRACT

Since December 2019, the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected ~435 million people and caused ~6 million related deaths as of March 2022. To combat COVID-19, there have been many attempts to repurpose FDA-approved drugs or revive old drugs. However, many of the current treatment options have been known to cause adverse drug reactions. We employed a population-based drug screening platform using 13 human leukocyte antigen (HLA) homozygous human induced pluripotent cell (iPSC) lines to assess the cardiotoxicity and neurotoxicity of the first line of anti-COVID-19 drugs. We also infected iPSC-derived cells to understand the viral infection of cardiomyocytes and neurons. We found that iPSC-derived cardiomyocytes express the ACE2 receptor which correlated with a higher infection of the SARS-CoV-2 virus (r = 0.86). However, we were unable to detect ACE2 expression in neurons which correlated with a low infection rate. We then assessed the toxicity of anti-COVID-19 drugs and identified two cardiotoxic compounds (remdesivir and arbidol) and four neurotoxic compounds (arbidol, remdesivir, hydroxychloroquine, and chloroquine). These data show that this platform can quickly and easily be employed to further our understanding of cell-specific infection and identify drug toxicity of potential treatment options helping clinicians better decide on treatment options.

10.
Pharmaceutics ; 14(7)2022 Jul 21.
Article in English | MEDLINE | ID: covidwho-1957414

ABSTRACT

Ciclesonide is an inhaled corticosteroid used to treat asthma and has been repurposed as a treatment for mildly ill COVID-19 patients, but its precise mechanism of action is unclear. Herein, we report that ciclesonide blocks the coronavirus-induced production of the cytokines IL-6, IL-8, and MCP-1 by increasing IκBα protein levels and significantly decreasing p65 nuclear translocation. Furthermore, we found that the combination of ciclesonide and dbq33b, a potent tylophorine-based coronavirus inhibitor that affects coronavirus-induced NF-κB activation a little, additively and synergistically decreased coronavirus-induced IL-6, IL-8, and MCP-1 cytokine levels, and synergistically inhibited the replication of both HCoV-OC43 and SARS-CoV-2. Collectively, the combination of ciclesonide and dbq33b merits consideration as a treatment for COVID-19 patients who may otherwise be overwhelmed by high viral loads and an NF-κB-mediated cytokine storm.

12.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1923546

ABSTRACT

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
13.
J Clin Invest ; 132(10)2022 05 16.
Article in English | MEDLINE | ID: covidwho-1846632

ABSTRACT

BackgroundThe Delta and Omicron variants of SARS-CoV-2 are currently responsible for breakthrough infections due to waning immunity. We report phase I/II trial results of UB-612, a multitope subunit vaccine containing S1-RBD-sFc protein and rationally designed promiscuous peptides representing sarbecovirus conserved helper T cell and cytotoxic T lymphocyte epitopes on the nucleocapsid (N), membrane (M), and spike (S2) proteins.MethodWe conducted a phase I primary 2-dose (28 days apart) trial of 10, 30, or 100 µg UB-612 in 60 healthy young adults 20 to 55 years old, and 50 of them were boosted with 100 µg of UB-612 approximately 7 to 9 months after the second dose. A separate placebo-controlled and randomized phase II study was conducted with 2 doses of 100 µg of UB-612 (n = 3,875, 18-85 years old). We evaluated interim safety and immunogenicity of phase I until 14 days after the third (booster) dose and of phase II until 28 days after the second dose.ResultsNo vaccine-related serious adverse events were recorded. The most common solicited adverse events were injection site pain and fatigue, mostly mild and transient. In both trials, UB-612 elicited respective neutralizing antibody titers similar to a panel of human convalescent sera. The most striking findings were long-lasting virus-neutralizing antibodies and broad T cell immunity against SARS-CoV-2 variants of concern (VoCs), including Delta and Omicron, and a strong booster-recalled memory immunity with high cross-reactive neutralizing titers against the Delta and Omicron VoCs.ConclusionUB-612 has presented a favorable safety profile, potent booster effect against VoCs, and long-lasting B and broad T cell immunity that warrants further development for both primary immunization and heterologous boosting of other COVID-19 vaccines.Trial RegistrationClinicalTrials.gov: NCT04545749, NCT04773067, and NCT04967742.FundingUBI Asia, Vaxxinity Inc., and Taiwan Centers for Disease Control, Ministry of Health and Welfare.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Humans , Immunization, Passive , Middle Aged , SARS-CoV-2 , T-Lymphocytes , Young Adult , COVID-19 Serotherapy
14.
Vaccines (Basel) ; 10(2)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1708024

ABSTRACT

BACKGROUND: The ChAdOx1 nCoV-19 vaccine has been widely administered against SARS-CoV-2 infection; however, data regarding its immunogenicity, reactogenicity, and potential differences in responses among Asian populations remain scarce. METHODS: 270 participants without prior COVID-19 were enrolled to receive ChAdOx1 nCoV-19 vaccination with a prime-boost interval of 8-9 weeks. Their specific SARS-CoV-2 antibodies, neutralizing antibody titers (NT50), platelet counts, and D-dimer levels were analyzed before and after vaccination. RESULTS: The seroconversion rates of anti-RBD and anti-spike IgG at day 28 after a boost vaccination (BD28) were 100% and 95.19%, respectively. Anti-RBD and anti-spike IgG levels were highly correlated (r = 0.7891), which were 172.9 ± 170.4 and 179.3 ± 76.88 BAU/mL at BD28, respectively. The geometric mean concentrations (GMCs) of NT50 for all participants increased to 132.9 IU/mL (95% CI 120.0-147.1) at BD28 and were highly correlated with anti-RBD and anti-spike IgG levels (r = 0.8248 and 0.7474, respectively). Body weight index was statistically significantly associated with anti-RBD IgG levels (p = 0.035), while female recipients had higher anti-spike IgG levels (p = 0.038). The GMCs of NT50 declined with age (p = 0.0163) and were significantly different across age groups (159.7 IU/mL for 20-29 years, 99.4 IU/mL for ≥50 years, p = 0.0026). Injection-site pain, fever, and fatigue were the major reactogenicity, which were more pronounced after prime vaccination and in younger participants (<50 years). Platelet counts decreased and D-dimer levels increased after vaccination but were not clinically relevant. No serious adverse events or deaths were observed. CONCLUSION: The vaccine is well-tolerated and elicited robust humoral immunity against SARS-CoV-2 after standard prime-boost vaccination in Taiwanese recipients.

15.
Lancet Respir Med ; 9(12): 1396-1406, 2021 12.
Article in English | MEDLINE | ID: covidwho-1621134

ABSTRACT

BACKGROUND: MVC-COV1901, a recombinant protein vaccine containing pre-fusion-stabilised spike protein S-2P adjuvanted with CpG 1018 and aluminium hydroxide, has been shown to be well tolerated with a good safety profile in healthy adults aged 20-49 years in a phase 1 trial, and provided a good cellular and humoral immune responses. We present the interim safety, tolerability, and immunogenicity results of a phase 2 clinical trial of the MVC-COV1901 vaccine in Taiwan. METHODS: This is a large-scale, double-blind, randomised, placebo-controlled phase 2 trial done at ten medical centres and one regional hospital in Taiwan. Individuals aged 20 years or older who were generally healthy or had stable pre-existing medical conditions were eligible for enrolment. Exclusion criteria included (but were not limited to) travel overseas within 14 days of screening, intention to travel overseas within 6 months of the screening visit, and the absence of prespecified medical conditions, including immunosuppressive illness, a history of autoimmune disease, malignancy with risk to recur, a bleeding disorder, uncontrolled HIV infection, uncontrolled hepatitis B and C virus infections, SARS-CoV-1 or SARS-CoV-2 infections, an allergy to any vaccine, or a serious medical condition that could interfere with the study. Study participants were randomly assigned (6:1) to receive two doses of either MVC-COV1901 or placebo, administered via intramuscular injection on day 1 and day 29. MVC-COV1901 contained 15 µg of S-2P protein adjuvanted with 750 µg CpG 1018 and 375 µg aluminium hydroxide in a 0·5 mL aqueous solution, and the placebo contained the same volume of saline. Randomisation was done centrally by use of an interactive web response system, stratified by age (≥20 to <65 years and ≥65 years). Participants and investigators were masked to group assignment. The primary outcomes were to evaluate the safety, tolerability, and immunogenicity of MVC-COV1901 from day 1 (the day of the first dose) to day 57 (28 days after the second dose). Safety was assessed in all participants who received at least one dose. Immunogenicity was assessed by measuring geometric mean titres (GMTs) and seroconversion rates of neutralising antibody and antigen-specific IgG in the per-protocol population. This study is registered with ClinicalTrials.gov, NCT04695652. FINDINGS: Of 4173 individuals screened between Dec 30, 2020, and April 2, 2021, 3854 were enrolled and randomly assigned: 3304 to the MVC-COV1901 group and 550 to the placebo group. A total of 3844 participants (3295 in the MVC-COV1901 group and 549 in the placebo group) were included in the safety analysis set, and 1053 participants (903 and 150) had received both doses and were included in the per-protocol immunogenicity analysis set. From the start of this phase 2 trial to the time of interim analysis, no vaccine-related serious adverse events were recorded. The most common solicited adverse events in all study participants were pain at the injection site (2346 [71·2%] of 3295 in the MVC-COV1901 group and 128 [23·3%] of 549 in the placebo group), and malaise or fatigue (1186 [36·0%] and 163 [29·7%]). Fever was rarely reported (23 [0·7%] and two [0·4%]). At 28 days after the second dose of MVC-COV1901, the wild-type SARS-CoV-2 neutralising antibody GMT was 662·3 (95% CI 628·7-697·8; 408·5 IU/mL), the GMT ratio (geometric mean fold increase in titres at day 57 vs baseline) was 163·2 (155·0-171·9), and the seroconversion rate was 99·8% (95% CI 99·2-100·0). INTERPRETATION: MVC-COV1901 has a good safety profile and elicits promising immunogenicity responses. These data support MVC-COV1901 to enter phase 3 efficacy trials. FUNDING: Medigen Vaccine Biologics and Taiwan Centres for Disease Control, Ministry of Health and Welfare.


Subject(s)
Adjuvants, Immunologic , Aluminum Hydroxide , COVID-19 Vaccines/immunology , COVID-19 , HIV Infections , Oligodeoxyribonucleotides , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Double-Blind Method , Humans , Middle Aged , SARS-CoV-2 , Taiwan , Young Adult
16.
EBioMedicine ; 74: 103712, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1536515

ABSTRACT

BACKGROUND: Despite clinical success with anti-spike vaccines, the effectiveness of neutralizing antibodies and vaccines has been compromised by rapidly spreading SARS-CoV-2 variants. Viruses can hijack the glycosylation machinery of host cells to shield themselves from the host's immune response and attenuate antibody efficiency. However, it remains unclear if targeting glycosylation on viral spike protein can impair infectivity of SARS-CoV-2 and its variants. METHODS: We adopted flow cytometry, ELISA, and BioLayer interferometry approaches to assess binding of glycosylated or deglycosylated spike with ACE2. Viral entry was determined by luciferase, immunoblotting, and immunofluorescence assays. Genome-wide association study (GWAS) revealed a significant relationship between STT3A and COVID-19 severity. NF-κB/STT3A-regulated N-glycosylation was investigated by gene knockdown, chromatin immunoprecipitation, and promoter assay. We developed an antibody-drug conjugate (ADC) that couples non-neutralization anti-spike antibody with NGI-1 (4G10-ADC) to specifically target SARS-CoV-2-infected cells. FINDINGS: The receptor binding domain and three distinct SARS-CoV-2 surface N-glycosylation sites among 57,311 spike proteins retrieved from the NCBI-Virus-database are highly evolutionarily conserved (99.67%) and are involved in ACE2 interaction. STT3A is a key glycosyltransferase catalyzing spike glycosylation and is positively correlated with COVID-19 severity. We found that inhibiting STT3A using N-linked glycosylation inhibitor-1 (NGI-1) impaired SARS-CoV-2 infectivity and that of its variants [Alpha (B.1.1.7) and Beta (B.1.351)]. Most importantly, 4G10-ADC enters SARS-CoV-2-infected cells and NGI-1 is subsequently released to deglycosylate spike protein, thereby reinforcing the neutralizing abilities of antibodies, vaccines, or convalescent sera and reducing SARS-CoV-2 variant infectivity. INTERPRETATION: Our results indicate that targeting evolutionarily-conserved STT3A-mediated glycosylation via an ADC can exert profound impacts on SARS-CoV-2 variant infectivity. Thus, we have identified a novel deglycosylation method suitable for eradicating SARS-CoV-2 variant infection in vitro. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.


Subject(s)
Benzamides/pharmacology , COVID-19 Drug Treatment , Glycosylation/drug effects , Hexosyltransferases/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Sulfonamides/pharmacology , Virus Internalization/drug effects , A549 Cells , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , HEK293 Cells , Hexosyltransferases/metabolism , Humans , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/metabolism
17.
J Biomed Sci ; 28(1): 80, 2021 Nov 23.
Article in English | MEDLINE | ID: covidwho-1533257

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus with a high mutation rate. Importantly, several currently circulating SARS-CoV-2 variants are associated with loss of efficacy for both vaccines and neutralizing antibodies. METHODS: We analyzed the binding activity of six highly potent antibodies to the spike proteins of SARS-CoV-2 variants, assessed their neutralizing abilities with pseudovirus and authentic SARS-CoV-2 variants and evaluate efficacy of antibody cocktail in Delta SARS-CoV-2-infected hamster models as prophylactic and post-infection treatments. RESULTS: The tested RBD-chAbs, except RBD-chAb-25, maintained binding ability to spike proteins from SARS-CoV-2 variants. However, only RBD-chAb-45 and -51 retained neutralizing activities; RBD-chAb-1, -15, -25 and -28 exhibited diminished neutralization for all SARS-CoV-2 variants. Notably, several cocktails of our antibodies showed low IC50 values (3.35-27.06 ng/ml) against the SARS-CoV-2 variant pseudoviruses including United Kingdom variant B.1.1.7 (Alpha), South Africa variant B.1.351 (Beta), Brazil variant P1 (Gamma), California variant B.1.429 (Epsilon), New York variant B.1.526 (Iota), and India variants, B.1.617.1 (Kappa) and B.1.617.2 (Delta). RBD-chAb-45, and -51 showed PRNT50 values 4.93-37.54 ng/ml when used as single treatments or in combination with RBD-chAb-15 or -28, according to plaque assays with authentic Alpha, Gamma and Delta SARS-CoV-2 variants. Furthermore, the antibody cocktail of RBD-chAb-15 and -45 exhibited potent prophylactic and therapeutic effects in Delta SARS-CoV-2 variant-infected hamsters. CONCLUSIONS: The cocktail of RBD-chAbs exhibited potent neutralizing activities against SARS-CoV-2 variants. These antibody cocktails are highly promising candidate tools for controlling new SARS-CoV-2 variants, including Delta.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/genetics , Humans , Rabbits , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
18.
Applied Sciences ; 11(22):10661, 2021.
Article in English | MDPI | ID: covidwho-1512088

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious threat to human health worldwide. The inactivation of SARS-CoV-2 on object surfaces and in the indoor air might help to halt the COVID-19 pandemic. Far-ultraviolet light (UVC) disinfection has been proven to be highly effective against viruses and bacteria. To understand the wavelength and duration of UVC radiation required for SARS-CoV-2 inactivation, we examined the efficacy of UVC light prototype devices with the wavelengths of 275, 254, and 222 nm. The disinfection effectiveness was determined by cell-based assays including the median tissue culture infectious dose (TCID50) and an immunofluorescent assay on African green monkey kidney epithelial Vero E6 cells. Among the three prototypes, the UVC LED (275 nm) had the best virucidal activity with a log-reduction value (LRV) >6 after 10 s of exposure. The mercury lamp (254 nm) reached similar virucidal activity after 20 s of exposure. However, the excimer lamp (222 nm) showed limited anti-SARS-CoV-2 activity with a LRV < 2 after 40 s of exposure. Overall, in comparison, the UVC LED (275 nm) exhibited superior SARS-CoV-2 disinfection activity than the mercury lamp (254 nm) and the excimer lamp (222 nm).

19.
J Clin Invest ; 131(21)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1495789

ABSTRACT

To explore how the immune system controls clearance of SARS-CoV-2, we used a single-cell, mass cytometry-based proteomics platform to profile the immune systems of 21 patients who had recovered from SARS-CoV-2 infection without need for admission to an intensive care unit or for mechanical ventilation. We focused on receptors involved in interactions between immune cells and virus-infected cells. We found that the diversity of receptor repertoires on natural killer (NK) cells was negatively correlated with the viral clearance rate. In addition, NK subsets expressing the receptor DNAM1 were increased in patients who more rapidly recovered from infection. Ex vivo functional studies revealed that NK subpopulations with high DNAM1 expression had cytolytic activities in response to target cell stimulation. We also found that SARS-CoV-2 infection induced the expression of CD155 and nectin-4, ligands of DNAM1 and its paired coinhibitory receptor TIGIT, which counterbalanced the cytolytic activities of NK cells. Collectively, our results link the cytolytic immune responses of NK cells to the clearance of SARS-CoV-2 and show that the DNAM1 pathway modulates host-pathogen interactions during SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/virology , Killer Cells, Natural/immunology , Receptors, Natural Killer Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Animals , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Adhesion Molecules/immunology , Cohort Studies , Cytotoxicity, Immunologic , Female , Heterografts , Host Microbial Interactions/immunology , Humans , Immunophenotyping , In Vitro Techniques , Ligands , Male , Mice , Mice, SCID , Middle Aged , NK Cell Lectin-Like Receptor Subfamily D/immunology , Pandemics , Receptors, Immunologic/immunology , Receptors, Virus/immunology , Viral Load , Young Adult
20.
PLoS Pathog ; 17(10): e1009704, 2021 10.
Article in English | MEDLINE | ID: covidwho-1484866

ABSTRACT

Development of effective therapeutics for mitigating the COVID-19 pandemic is a pressing global need. Neutralizing antibodies are known to be effective antivirals, as they can be rapidly deployed to prevent disease progression and can accelerate patient recovery without the need for fully developed host immunity. Here, we report the generation and characterization of a series of chimeric antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Some of these antibodies exhibit exceptionally potent neutralization activities in vitro and in vivo, and the most potent of our antibodies target three distinct non-overlapping epitopes within the RBD. Cryo-electron microscopy analyses of two highly potent antibodies in complex with the SARS-CoV-2 spike protein suggested they may be particularly useful when combined in a cocktail therapy. The efficacy of this antibody cocktail was confirmed in SARS-CoV-2-infected mouse and hamster models as prophylactic and post-infection treatments. With the emergence of more contagious variants of SARS-CoV-2, cocktail antibody therapies hold great promise to control disease and prevent drug resistance.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cricetinae , Disease Models, Animal , Female , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL